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OPTIMUM WING SHAPES IN A HYPERSONIC NONEQUILIBRIUM FLOW 

V. N. Golubkin and V. V. Negoda UDC 533.6.011.55 

The trajectories of aerospace vehicles include sections of hypersonic flight at an 
angle of attack characterized by substantial nonequilibrium flow over the bottom surface 
of the wing (lifting body) [I, 2]. The thin-shock-layer method has proven very fruitful 
for general study of the effect of nonequilibriumphysicochemical processes on the flow 
field and the aerodynamic characteristics of wings. Using this approach for a gas of vari- 
able density, Stalker [3] generalized well-known solutions for a delta wing in the case 
of non-Newtonian flow. The ideas set forth in [4, 5] were used in [6, 7] to integrate a 
system of equations for a three-dimensional nonequilibrium shock layer on a low-aspect- 
ratio wing of arbitrary form. An effective method was proposed in [8] for solving the two- 
dimensional system of equations obtained by integration for the form of the surface of the 
lead shock. Proceeding on the basis of the analytical solution in [4], the authors of [9] 
formulated a variational problem involving determination of the configuration of a wing 
with optimum aerodynamic performance. Despite the fact that the flow field around the 
wing is three-dimensional -- in contrast to the cases examined in [i0] -- the solution re- 
duces to the minimization of a unidimensional functional. The results in [9] pertain to the 
limiting cases of a wing in a flow of an ideal gas or equilibrium reacting air. 

In the present study, we propose a variational method of determining the shape of a 
wing which is to perform optimally under hypersonic conditions for the general case of 
chemically nonequilibrium flow. The solutions that are obtained reveal features of the 
design that allow an improvement in the aerodynamic performance of wings and lifting bodies 

in a relaxing hypersonic flow. 

i. A highly approximate estimate for pressure is obtained from the limiting Newtonian 
scheme of hypersonic flow with an infinitesimally thin shock layer on the surface of a body 

and the density ratio on the coincident lead shock p~/p~ = e = 0. Examining the next ap- 
proximation, with small nontrivial values of e, makes it possibleto more accurately evaluate 
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the flow characteristics by studying the structure of the flow in the shock layer. The 
latter is affected by the character of the physicochemical processes which occur in the 
gas at high temperatures, i.e., by whether these processes are frozen, equilibrium, or 
intermediate (nonequilibrium) [i, 2]. In both of these limiting cases, flow over the wind- 
ward side of a thin low-aspect wing is in principle analogous to the flow of an ideal gas 
with the adiabatic exponent K + 1 [4, ii, 12]. 

We will examine a substantially nonequilibrium flow, assuming that the order of magni- 
tude of the extension of the wing is the same as that of the Mach angle in the shock layer 

(sz/= tan ~) and that the relative thickness is of the same order as the thickness of the 
layer (s tan a). With small E and finite angles of attack a, the main sought functions can 
be represented in the form of expansions 

~~174  = cos a + eu sin a tg a + . . . ,  

v ~ V =  = e v  sin a + . . . ,  w ~ 1 7 4  = 81/2w sin a + . . . .  

(pO _ p = ) / ( p ~ V ~ )  = (I + ep) sin2a § . . . ,  ( 1 . 1 )  

p~ ~ = 8 - 1 p  @ pl  + . . . , 2 h ~  = h s i n 2 ~  + . . . , 

w h e r e  u ~  v ~  and  w ~ a r e  t h e  c o m p o n e n t s  o f  t h e  v e l o c i t y  v e c t o r  i n  t h e  c o o r d i n a t e  s y s t e m  
x ~ 1 7 6 1 7 6  c o n n e c t e d  w i t h  t h e  w i n g ;  pO, p o  and  h ~ a r e  p r e s s u r e ,  d e n s i t y ,  and e n t h a l p y ;  and  

V~, p~, and 9~ are the parameters of the incident flow. The functions u, v, w, and p, de- 

pendent on the dimensionless coordinates (where L is the length of the wing) 

x = x ~  y = y ~  z = z ~  ( 1 . 2 )  

a r e  d e t e r m i n e d  f r o m  t h e  " g a s  d y n a m i c "  p a r t  o f  t h e  c o m p l e t e  s y s t e m  o f  e q u a t i o n s  i n  t h e  g i v e n  
a p p r o x i m a t i o n  

t Op D w  = O ,  D u  = O, D e =  p ay ' 

Ov &o 0 0 0 
D ln9  + 3~- + 3-7 = 0, D-~-- -5-~z-bv-8-~+~va--  [ 

(1.3) 

Here, the boundary conditions on the lead shock y = S(x, z) and on the wing y = B(x, z) are 
as follows 

o s  _ o s  _ ( o s 1 2  o s  
l~s - -  Ox' Vs - -  O z  \ O z  ] - -  ~ '  u;s - -  Oz ' 

OB OB p~=--l--ua=,--2us, p~=i, g=S(x,z), v=-a7 +tv~,  y=B(x,z). 
( 1 . 4 )  

It turns out that the ratio of the continuous component of vorticity to the density 
of the gas remains constant along the streamlines of the given three-dimensional flow[5] 

( •  ~176 = 0. (1.5) D \ p  o~/ 

With an arbitrary function p, this allows us to integrate nonlinear three-dimensional system 
(1.3) and, with allowance for boundary conditions (1.4), reduce it to two-dimensional equa- 
tions relative to the form of the lead shock: 

f a~ d~ ( 1 . 6 )  S (x, z) = B (x, z) + ~ (x, ~, z) o (z -- ~) '" 
~b(X,z) 

ag 
--~ z ~- (x - -  ~) ~ (~, ~). ( 1 . 7 )  

Here, x = $, z = ~ are the coordinates of the point of entry of a streamline into the shock 
layer; ib pertains to the surface streamlines. Finding the main function S(x, z), we express 
all of the remaining sought functions in the form of integral and functional relations. For 
example, 
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0S 
" J" <~ (x, ~', z) u = - ~ ( L 0 ,  y = B ( z , z ) +  ~ ~(~-~')'~' (1 .8 )  
~b 

In turn, the still-arbitrary function p is determined from the second, "chemical- 
kinetics" part of the problem. In contrast to three-dimensional system (1.3), it is a set 
of unidimensional enthalpy equations containing only derivatives along the streamlines: 

Ohl = 0 ,  h s=cons t ,  Dh=Tx ~,~ (1.9) 

The function also contains a set of parameters qn [2] characterizing the composition and 

state of the gas mixture in the shock layer with constant pressure (i.I) and enthalpy (1.9) 
in the principal term. Thus, the functional form of the latter and the equation of state 
of density determined in terms of these quantities will be f(x -- $). This expression has 
already been used in (1.6), (1.8). Since the streamlines around a low-aspect wing are nearly 
rectilinear in the given analytical approximation, density p(x - $) can be found [3, 6] by 
numerically calculating the unidimensional flow of the relaxing air behind the shock wave. 
Analysis of the numerical results in [i] showed that in the region in which the law of binary 
simulitude is valid (height H ~ 40 km) and with velocities on the order of the escape veloc- 
ity, we can approximate p in the form 

p (x - ~) = 

1, 0 < ~ x - ~ < a j ,  
t + K,~ In z--____[~ a I <~ x -- ~ <~ aeq, (y! ' ( 1 . 1 o )  

where K~= Ap/in(o,Jol); oi, aeqare the dimensionless lengths of the region of frozen flow near 
the shock and the relaxation length (usually, of << Oeq); and hp is the difference between 

the equilibrium and frozen values of density. The quantities of and Oeq depend on the binary 

similitude parameter p~L and flight velocity. The flow around the wing can be considered 
frozen at of > 1 and equilibrium at of < Oeq << i. In both cases, g is chosen so that p ~ i. 

It is interesting that, in accordance with (1.5), the increase in density which occurs 
during relaxation (i.i0) also results in an increase in vorticity downstream. 

2. If we use the integral momentum theorem, we find that the normal and axial forces 
acting on the bottom surface of a wing with a shock attached to its leading edge can be 
expressed through the integrals over the aft section of the shock layer Z c in the plane x = i. 

N = el/2o (t ~- eP) sin~162162 tg a + . . . ,  
p~V~L 2 

T ~ 2 = - - e s / 2 a ( ~ - - R )  sin2cctg~cc-~-''', 
p=V=L 

P ---- ax~eMisin'-'a ~ ~- [Pl -5 P (v + u tg2a)] dy dz, 
Zc 

t ci yydxdz,  =~ydydz.  R=----$-y]pudydz,  ---- ec 
Z c Z X c 

The region 7 is bounded by the projection of the leading edge on the plane y = 0 [z[ = Ze(X) 
or x = Xe(Z) and the trailing edge x = i, while the region 7 c is bounded by the lines B(I, z) 
and S(I, z). Changing over to the continuous coordinate system, we obtain the following for 
aerodynamic performance in the given non-Newtonian approximation 

K = c t g ~ - - ~ Q ,  Q R W" ( 2 . 1 )  

It is evident from this that, in principle, the thin-shock-layer method is better than the 
approach based on the Newtonian limit for a place in regard to the accuracy of determination 

of the gasdynamic functions. 
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TABLE 1 

~ 
2,63 [ 
3,2 

zo xt .4 Qmin 

0 
0,07 
0,i75 

--0,48 
--0,37 
--0,3 

--i,i2 
--i,16 
--i,i7 

It is very important that the double integrals in (2.1) are transformed into single 
integrals when analytic solution (1.6-1.8) is used. In fact, if we follow [9] and integrate 
over ~ and ~, we obtain the following in the case of variable density 

b I 

(~ = ~ [1 --  x. (z)] dz, (~r = 2 ] z. (x)/p (i  -- x) dx, 
--b 0 

b 

i j" { S ( l ,  z ) - -S[x , ( z ) ,  zl}dz, b = z , ( i ) .  R = . - s  
--b 

(2.2) 

As a result, the problem of optimizing wing shape to maximize aerodynamic performance at 
hypersonic speeds reduces to finding the minimum of the unidimensional functional Q (2.1). 
Here, we assume that the flight regime (V~, H, ~) and the length of the wing L are given 
and that we assign the area of the wing in plan a (i.e., buoyancy) as an isoperimetric con- 
dition. 

It is evident from (2.1-2.2) that R = ac/a and Q = 0 for a flat wing (B = 0) with an 

edge of arbitrary shape in plan (assuming that the shock is attached). Fairly large gains 
in performance compared to cot a in the Newtonian limit or the performance for a flat wing 
can be obtained by choosing the shape of the wing in plan and the transverse strains of the 
wing's surface. As a result, R < 0, i.e., the projection of the leading edge on the plane 
x = i lies below the aft section of the shock. The corresponding optimum form of the shock 
will be sought in the class of functions 

S(x ,  z) = kz ~ In(6 + x), (2.3) 

where k, n, and 6 are arbitrary form factors. With a constant density (p = i), tlhe area 
of the wing in plan will be equal to the area of the aft section of the shock layer o = Oco 
Meanwhile, the functional R will have the same form for both variable density and for p = i. 
In this case, the main functions entering into R (or Q) are the form of the shock y = S(x, z) 
and the projections of the leading edge. After they are found, the form of the surface of 
the wing is determined from (1.6-1.7), (i.i0) using the method in [9]. The existence of 
the solution of this inverse problem is one more condition to be met in the solution of the 
variational problem. The latter is divided into two parts. The first such condi- 
tion is optimizing the contour of the wing in plan while the form of the shock 
is given. Resulution of this problem in a manner similar to [9] yields Rmi n > 0 

at k > 0 for a wing with a bow edge Ze(0) # 0. An even greater increase in 
performance is obtained at R < 0 (k < 0), although here we have a maximum Rma x < 0 

rather than a minimum. Since Kmi n is then greater than Kma x for k > 0, the solution of the 

second part of the variational problem on optimizing the form of the shock (the parameters 
k, n, and 6) should be sought in the region k < 0. If this is the case, then performance 
K > Kmi n for any wing shape different from that obtained in the first stage [9]. However, 

fairly severe restrictions are imposed on it by the above condition regarding the existence 
of the solution of the inverse problem (which unfortunately is not stated in analytical 
form). We therefore solved the optimization problem by a direct numerical method with al- 
lowance for the tendencies demonstrated in [9] in regard to the effect of the form factors~ 
Specifically, we selected the most suitable factors and checked for satisfaction of the 
given condition numerically. To eliminate physically unrealistic edge shapes and those that 
violate this condition, we also assigned the span of the wing 2b and required that ZVe(X) ~ 0 

on most of it. All of the characteristic configurations are covered by the function Ze(X) 
in the form of a cubic parabola with respect to an argument reckoned from the point z 0 = 
Ze(0) ~ 0 along an axis making an angle 8 with the x axis: 
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I z ~ + x t g ~  0<~.x<~xl, 
ge (~) / b, xl <<.x <<. l ,  

Az~cosO-~F(x/cosO+Az. sinO), x l t g 0  = b -  zo, 

F (~l) = A'q (~q - -  l~) (~l - -  LJ, Z~ = x~ + (b --  zo)". 

(2.4) 

Here, the parameter s is determined from the assigned area o: 

ll  = - / +  m--~F' ~1 = y [~ - -  b (2 - -  x ~ )  - -  z ~ x l ] ;  

Along with k, n, and 6, the parameters z0, x i, and A were varied within the limits 

O~zo<~b, 0 , 5 ~ < x ~ < i , - - i < ~ A ~ i ,  - - 0 , 5 ~ k ~ < 0 ,  2 ~ < 3 ,  0 < 5 ~ < 0 , 5 ,  

which ensured that we would consider a wide range of configurations -- since the root s and 
the point of inflection q, = (s + s could be located either within the interval [0, s 
or outside it. In general, the given approach is similar to that used in [13]. In the anal- 
ysis of the functional Q, for convenience the variable part of density in (i.i0) was rep- 
resented in the equivalent form [(x-- ~)/~i] ~ [8] since K n << i 
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3. Let us present some results of using the variational method developed here. For 
the case when the trajectory parameters are M~ = 20, H = 60 km, and a = 30 ~ (s = 0.175) and 

the parameters of the nonequilibrium density distribution of = 10 -3, Oeq = i, K n = 0.07 with 

assigned dimensionless values for the area in plan o = 3 and the span 2b = 3.5, we obtained 

the form factors for the optimum wing in (2.3-2.4) k = --0.5, n = 2, 6 = 0.38, z 0 = 0.07, 

x i = i, A = --0.37 and the value Qmin = -i.16. In terms of aerodynamic performance, this 

gives Kma x = 2.2. Figure la uses corrected coordinates (1.2) to show cross sections of the 

surface of this wing (the hatched lines) and the lead shock (solid lines) in the planes x = 
const (the dashed line shows the projection of the leading edge on the plane x = I). Figure i, 
parts b and c use the initial coordinates to show the overall shape of the bottom surface 
of the wing and the lateral view. The gain in performance compared to the Newtonian value 
K N = 1.73 is realized due to the fact that the part of the surface adjacent to the leading 
edge where the width of the wing increases abruptly is bent downward. As a result, the 
projection of the leading edge on the aft surface x = 1 lies below the section of the shock 
coincident with this plane. In this case, the functional R < 0 (2.2). The optimum wing 
has an inwardly concave bottom surface and a characteristic central depression in the aft 
part. The presence of the depression is probably connected with the optimum properties of 
star-shaped bodies [14], these same properties being intrinsic to configurations of the 
given class. A change in the area o affects mainly the parameters of the shape in plan 
(see Table i). Meanwhile, a decrease in o is accompanied by a decrease in the gain in per- 
formance. If the assigned area o is close to the area of the circumscribed rectangle 2b • i, 
then the optimum wing has a bow edge (Fig. ib, Fig. 2b). This shape disappears with a de- 
crease in o (Fig. 2a). 

Comparison of the results of optimization with the same trajectory parameters in a 
flow of an ideal gas (< = 1.4) showed that nonequilibrium has almost no effect on the form 
of the optimum wing in plan but does change the configuration of the bottom surface. The 
latter change occurs because the thickness of the shock layer decreases as a result of a 
relaxational increase in density. There is also a decrease in Kma x (at o = 3, Kma x = 2.2 

instead of Kma x = 2.34 for m = 1.4). The dashed lines in Fig. 3 show cross sections of the 

wing at ~ = 1.4, while the solid hatched lines show cross sections in the nonequilibrium 

flow. If instead of Oeq = 1 we take Oeq = 0.2 -- which is equivalent to a fivefold increase 

in the length of the wing and more advanced relaxation -- then instead of Qmin = --1.16 we ob- 
tain Qmin = -1.13. Accordingly, Kma x = 2.2 and 2.19. In the equilibrium limit, we have 

Eeq = 0.093, Kma x = 2.05. 

Figure 4 shows the effect of the actual properties of air on the function Kmax(~) (M~ = 

22, H = 70 km). Here, line 1 corresponds to K = 1.4, while line 2 corresponds to flow of 
equilibrium reacting air. The points depict nonequilibrium flow about a wing of length 
L = 14 m with angles of attack ~ = 30 and 45 ~ . Despite the fact that the effect of the 
real gas is to reduce Kmax, its value nonetheless remains greater than in the Newtonian 

limit K N = cot ~ (the dashed line in Fig. 4). 

Allowance for viscosity with the assumption of a constant friction coefficient showed 
that it has almost no effect on the configuration of the optimum wing. However, in this 
case, the decrease in maximum performance is greater, the smaller the angle of attack. 
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In using parametric relation (2.3) to specify the functional form of the shock, we 
set out mainly to determine the geometric features of the wing that might improve per- 
formance. As regards the value of Kma x, it may be somewhat greater for wings having dif- 
ferent features generating a shock functionally different from (2.3). 

In conclusion, we note that the optimum shape obtained for the bottom surface of the 
wing is also the optimum shape for a bottom surface of a lifting body. The top surface 
of the latter can be formed (for example) to conform to the streamlines of the undisturbed 
flow passing over the leading edge. For such a body, the exchange coefficient T = V/S 3/2 N i. 

The authors thank G. I. Maikapar for supporting our efforts in this study. 
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